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The State of Stress in Plates, antisymmetrical about the middle surface, 
has been studied by seams of the syebolic method of Lur* e c1.21. The 
possibility of constructing the basic states of stress separately, with- 
out taking aCCOUnt of St. Venant edge effects, was analyzed. It was 
established that boundary value problems exist for which the exact two- 
dimensional theory t3-33 gives only an illusory refinement of the basic 
state according to Kirchhoff. 

LOW !91 considered the construction of a basic state of stress with 

the following properties: (a) it satisfies exactly all equations of the 
theory of elasticity; (b) it satisfies exactly the given conditions on 
the upper and lower surfaces (Z = f h); it has the arbitrariness 
associated with biharmonic functions; and (d), it differs from Kirchhoff 
theory by correction terms of the order of a* (a = h/l, the relative 
plate thickness). Love [91 determined the basic state of stress sepa- 
rately, with two conditions on each edge, but without analysis of errors. 

Lur* e cl.23 developed the theory of the basic state of stress and 
showed El] that all other states of stress are rapidly varying. Vith 
certain additional conditions they exhibit St. Veuant edge effects, 
localized at the edges and in places where the load or its derivatives 

has discontinuities. 

Lur’ e [l] , by application of the symbolic method with certain 

modified solution functions, succeeded in showing that three Classes of 
problems may be distinguished according to the edge conditions. classes 
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for which the state of stress may be determined with different asYmP- 
totic errors: class A with error 8~ a, class B with error 8* a’* and 
class C with error &<a’. 

Clamped plates, cantilevers, plates wi.th edges having zero bending 

stress (oll). zero shear stress parallel to the plane of the plate (ulg) 
and zero normal displacement (u3), belong to class A. Freely supported 

plates (~7~~ = a2 = a3 = 0 at the edge) belong to class B. Freely SUP- 
ported strips and beams (ull = u3 =: 0 on the edges) belong to Class C. 
as well as formal problems for which two integral conditions are given 
initially on the edges and for which the basic state of stress is deter- 
mined without regard to edge effects, but taking account of displace- 
ments or stresses given on the edges. 

The separate construction of the basic state of stress in class A or 

in class B problems does not have the meaning of applying a theory more 
exact than Kirchhoff’s. The approximate calculation with one edge effect 
(from the three infinite sequences) as considered in two-dimensional 
theories [3-s] may have an essential significance here only in excep- 
tional cases. Therefore, the exact two-dimensional theories [3-81 do not, 
generally speaking, guarantee the exact basic state of stress in prob- 
lems of class A and class B. For class C problems they give less exact 
results than theories of the separate construction of the basic state 
of stress !Z,91 and the methods of truncated power series [lo]. We note 
that analogous results were obtained not long ago by Gol*denveizer* by 
the method of asymptotic processes [II], 

The difference between the Gol’denveizer method [ill and the asymp- 
totic method of this paper is that the Gol’denveizer method introduces 
at the very beginning approximations with asymptotic errors of the 
order of a, a’, a , 3 . . . . while the symbolic method of Lur’e consists of 
an initially exact formal solution which may be expanded in series of a 
small parameter a. The Kirchhoff theory may be established by such an 
expansion, as well as formulas for the different approximate methods 
using truncated power series [lOI and the method of asymptotic processes 
tll. 121. Such an expansion does not appear to be necessary for the 
numerical solution of problems taking account of edge effects. 

1. Basic notation and the initial symbolic formulas. Let E be the 
modulus of elasticity, p Poisson* s ratio, 2h the plate thickness, I a 
characteristic dimension of the middle surface (in case of sinusoidal 
loading, no more than a half wavelength), w = h/l, the relative plate 
thickness; c. TL 5 dimensionless Cartesian coordinates of which 5 and q 

* A.L. Gol’denveizer advised the author of this in a conversation held 
in December of 1962. 
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are taken to be in the middle surface (5 = 0) of the plate; ai (i = 1.2, 

3) dimensionless displacements in the c. Q, 5 directions, respectively; 
“ij (i,j = 1, 2, 3) diaensionless stresses (multiplied by (1 + pi)/.!Y1); 

(ii (i =I, 2, 3) integral displacements, hfkr (k,r =I, 2) dimensionless 
moments, and Q,. dimensionless transverse forces. 

In this notation 

Following [I] we take as differentiation symbols 

Assume that antisymmetric loads are given on the upper and lower sur- 
faces, such that 

0,s (E, Q, f 1) = Prt ‘Jss 6, Q, f 1) = f Par Pi = Pi ($9 Q) 

(r = 1, 2; i = 1, 2, 3) (1.3) 

The Lur’e symbolic method permits the construction of the following 
formulas for the displacements: 

ur = ar II -2&$ sin q co9 & - co9 q sin 46) - sin p sin 4 
I 

91 - 

- 2 (- 1y (al + az - a,) 
TW+ 

+a, -&cosqc*s*~ - * 
t 

sin g5 1 cos p - - - sin g sin 91; (ps 
- Q 2-W 1 

(1.4) 

W = 
I 
&$G sinqsinqc +c0sqc0sqt;)+1qsi,i,qc0sq~ 

2 - 211 1 cpl+ 

+[-- *(sin qeOs&--< cospsinqS)+cosgcos&]cpS 

Expressions for the dimensionless stresses and strains aa.v be ob- 
tained as the formulas 

% = eji + -_.JL- e, 
1----p 

Ie %j = 2 ij (i, j = 1, 2, 3) (1.5) 

e a 
rr = a&, 

&la = 9 %’ 
8 = %I+ %a + -%+a (W 

ha = a1ur + ah, era= a, ua + Jt ut 
at 

(r = 1, 2) 

Conditions (1.3) are satisfied if solution functions pi (i = 1, 2. 3) 
are determined from the equations 
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- D?m + ~0s q @a'@) = PI, -DW=pii 
I) 

(1.7) 
-I%%- CC& q (Mb) = PL 

The trigonometric functions of q or of qg are to be understood as 
symbolic descriptions of differential expressions of infinite order 
appearing during their development in the form of power series L1.d. 
The differential expressions contain only integral powers of A in their 
expanded form. 

2. Elementary states of stress. For brevity, we restrict OurSelVeS 

to the cases 

ps = P, cos ‘mq, pz = PO sin mq. Pt = Pi (a 

qe = 0, cos mq, cpr = @a sin mq, (8 = 1, 3; i = 1, 2, 3) (2.1) 

where the real parameter no satisfies the condition 

m< a. (2.2) 

We have, from (2.1) 

A = ale - m2 (2.3) 

A solution of (1.7) may be constructed [d in the form 

‘pi = ‘pi* + ‘p”i + $‘i (i = 1, 2, 3) (2.4~ 

Here the qi+ denote particular integrals corresponding to the given 
loadings pi’ and the Rio are solutions of the equations 

3ALg + &qs” = 0, &AA - 3-w 3 - 3p ‘PI0 -alqki” = 0, AAcps” = 0 (2.5) 

while the yi denote the sums 

of special solutions satisfying the conditions 

A~i = lia pi (S= 1, 3; 1 = 1, 2, . . ., co) (2.7) 

in which the kj are non-zero roots of the equation 

sin 2k = 2k (2.8) 

and the hi are roots of the equation 

cos 1, = 0 (2.2) 

The non-zero roots of equation (2.8) are complex and appear in pairs 
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differing in sign. We write the roots with a negative real part in the 

form 

kj’_ j k(l) + iki2) 
3 ’ 

ki= _ kfl) _ i/&2) 
I (2.10) 

Calculation [I] gives for the first values of kj(‘), k.(2) 
I 

(2.11) 
kl(‘) = 3.749, k&l) = 6.950, ks(‘j = 10.119, kI(*‘= 1.364, k&“) = 1.676, &t2) = 1.656 

With increasing order of j the magnitudes of hj(‘) and bjf2) are de- 
termined more exactly by the approximate formulas 

k(J) = jn + n 
) * R. --- 

4 2 1’ 
k(i”’ = R .k@ 

31’ 
R 

j 
= In (4in + n) 

Zin + Vt n 
(2.12) 

Equation (2.9) has the negative roots 

lj = - n 0’ --‘/a) 

1. The basic state of stress constructed 
In the special case 

(2.13) 

with the aid of qi*. qio. 

PI = 0, PI = 0, Ps = con&, m=O (2.14) 

one may select 

Ql* = 0, Qs* = 0, Q** = I- P p*e4 
8 

(2.15) 

and from (1.4) formulas are obtained for the displacements 

ua* = Ps 

uz+ = 0 (2.16) 

--~+6(~--14S~- (if MS]} 

The scope of this paper does not permit consideration of other cases 
and so we conclude by referring the reader to cl, 21. 

For the analysis of the state of stress calculated from the qio, ex- 

cluding ‘p2’, in formulas (1.4) with the aid of the first two equations 

of the system (2.5). we develop symbolic trigonometric expressions in 
the form of power series and take &&pl” = 0, &go = 0. We obtain 
formulas expressing a20 in terms of f@I”, Q~O and their derivatives up 
to and including the third order. It is shown that the state of stress 

constructed from fLq~’ may be obtained as a linear combination of States 
of stress corresponding to the function ~B~O. Therefore, it suffices to 
consider the relation excluding qSo. We have as formulas for the dis- 
placements 
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u”= r -1-L 
2-q 

A+3 caA a,5 ‘~3” 
6 - 6~ 1 

us” = 1 - - C 2-p A+ 
2 - 2p 

C’ca A 
2-w 1 ‘~3” (2.17) 

Here, on the basis of (2.1) 

‘psO = (AleM + _&em4 + A&e-“* j- A&z-“‘~) CoS mq for m # 0 

qs“ = Al’ + Aa’E + A,’ E’ + -44' t3 for m = 0 
(2.18) 

(2.19) 

The basic state of stress is constructed in the form of sums 

u.1 = u.* + 2J.O (1) * 
I 1 I ’ 

oij = oij + cr;j (4 j = 1, 2, 3) (2.20) 

2. Edge effects of the St. Venant type. Assume m to be sufficiently 
smaller than the values of kl (‘I and h,l, for example m < 1; ‘then vii 
is a rapidly decaying (or growing) function of 5 determining edge 
effects of the St. Venant type. For a sufficiently thin plate, and 
introducing the coordinate < inside the plate parallel to the edge, 
the function rvij may be dete*rmined from the formulas 

Qsj = Ysj cos mq, qzj = Yzj sin mq (s = 1, 3; i = 1, 2, . . , CC) (2.21) 

Ysj = csjemxj4* + Csje -Xj4* , \yzj = Bjemsj:-* 

xi = + l/(kj)a + m2 , xj= +vm, 6j= + f/hj"+ m2 (2.22) 

Here C sj, Csj are complex conjugates and Bj is a real constant. 

On the basis of (2.21) it is not difficult to obtain formulas from 
(1.4) for the edge effect displacements, ait2). Formulas for the 
stresses may be obtained from (1.5) and (1.6) and for the integral 
quantities from (1.1). For example 

MI1@) = 2m cos mq 

where 

,’ sin2 k. 
CIj = 3 L 

--x;‘;, sins k. -;j4* 

kj2 
- 1 Clje 

) 
, Gsj = + 

3 
Caje (2.24) 

and the formulas for Glj, Gsj are obtained from (2.24) by substituting 
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for kj, Kj, Clj, C3j the conjugate quantities kj, cj, Eli, cSj. For the 
case IR = 0 we have 

M11(2) Es 0, Qlt2) ZE 0 

but the integral displacements are not zero. Hence, 
mination of the basic state of stress reduces for I 
ally determinate problem where M,, and Q1 are known 

The complete state of stress (in the edge effect 

in the form of the sums 

(2.25) 

the separate deter- 
= 0 to the static- 
on the edges. 

zones) is determined 

ui = ui(l) + @), Q.. = a.w + 0.P’ 
11 13 13 

(2.26) 

3. Example. Limiting asymtotic accuracy of the aesarate detenina- 

tion of the basic state of stress. Let the load be as in (2.14). On the 
edges 

1 
g=fEo=~=a-‘>1 

are given the conditions 

ug (Eo, 6) = 9 (s - 1, 3) 

from which it also follows that 

Ii, (Eo) = 0 (s = 1, 3) 

By virtue of symmetry in the problem we have in (2.19) 

Az’ = A*’ = 0 

On the basis of the preceding formulas we have 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

ua = ug* + As’ f2 - 
( s + I& ?) + A1' + 2 &j +&j+ Laj+ &jj) (3a5) 

j=l 

WI = P& [- y E2 + $ (1- 3~)] - 2%As’ + 5 (Srj +3rj + ssj + ‘si) 
j=1 

Us=Pa 
[ 
~gr_~ga+3~]+Al’+AJ’[%P-~]+ 

+ i (T,j + Tlj -t T,j + Tsj) 

j=l 

here u l and u3* are determined from formulas (2.18). and 
1 

Klj = kiCljeikjE* sin k j cos k$ - cos kj sin k&) - sin kj sin kj~] (3.6) 
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Ksj = kjCS,ekjs’ 
1 - 2p 

-~ COS kj COS kjs-- 
sin kj5 

2- 2pcos kj kj - -Ap sin kjsin kjc 

i--2cr 
sin kj sin kj6 + COS kj COS kj6) + m kj sin kj<COS k,< 

I 

- &+ (sin kj cos kj~ - 6 cos kj sin kjQ -/- COS kj COS kjc 
3 

(34 

31r 
‘,j = I_‘p kjClje 

kje* Tlj = CljekjT* sin4 kj 

SSj = & kj,C3je 
k.t sid kj 

3 l - kj2 
, TSj = CSjekjE’ 

The conjugate quantities Zlj, K3j, ilj, . . . are obtained from (3.6) 

by substituting for kj, Clj, CSj the quantities kj, Clj, ESj.It is easy 

to prove from (2.8) that the values of K3j, LSj, . . . differ from the 

corresponding values of K, j, Llj, . . . only by constant multipliers and 

so without loss of generality one may set CSj = CSj = 0. 

On the basis of (3.5) and (3.6) it is easy to set up expressions for 

the displacements on the edges of the plate where t = * e,, and c, = 0. 

The condition 

us Go, 6) - lja (Eo) = 0 (3.7) 

is fulfilled for ~1 # 0 only in the case where Clj, Eli exist with values 

of the order yf P3$02. Therefore the separate determination of the co- 

efficients Al , A, - for example in their calculation from conditions 

(3.3) without taking edge effects into account - is connected with an 

asymptotic error (as a - 0) of the order of a. 

We have the formulas for the basic state of stress 

ul(l) = q%v EC [ 1 - j$i + 0 (a,] 1 
qs(‘) = - $a (4 - f3 (3.8) 

up = ~P~so4[(1-~)“+o(a,], %I l) = f PsE25 
[ 

1 - 5$ + 3E? 0 (a)] 

J&(l) = Ml1 = + Psfos [.I - 3; + 0 (a) 
I 

, cdl) = ; PsC (I - 4 5”) 

Qlfl) = Q1 = - 2PsE 

Formulas (3.8) - without estimating the errors or the expressions 

for aIS( oS3(l) - represent in themselves the solution of the 

Kirchhoff theory. Accuracy of the order of a’, the proposed refinement 

of theories [3-81, is useless in the given case. The results and con- 

clusions would be the same if the homogeneous boundary conditions (3.2) 
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were substituted into functions jl(<), f3(<), which with their deriva- 
tives have an order not greater than P,f&‘. It is possible to choose 
functions fl(<>, f3(o which vary rapidly with 5 and do not succeed com- 
pletely in a separate determination of the state of stress. With an in- 
creasing value of j the edge effects vary more rapidly with $ and the 
coefficients Clj, Eli decrease. In actual problems, therefore, it is 
sufficient to limit oneself to taking account of a finite number of edge 
effects (coefficients Clj, ?lj) even though in the asymptotic sense as 
Q - 0 they are all of “identical order”. 

The solution (3.8) may also be refined by the method of asymptotic 
Processes [ll-131. to such a stage that the refinement leads to the con- 
struction of edge effects similar to the above. 

For example, if the first of conditions (3.2) with the condition 
oll(&, 5) = 0 are substituted, then ulcl) and all stresses in the basic 
state of stress are determined separately and exactly, and ugcl) to an 
asymptotic error of the order of 04. This is connected with the proper- 
ties (2.25) of edge effects and creates comparatively favorable condi- 
tions for the refinement of two-dimensional theories. This is analogous 
to the situation for statically determinate problems in the calculation 
of circular plates under uniformly distributed load as considered by 
Reiss [131; therefore the result of Reiss does not contradict the con- 
clusions regarding the accuracy of the theory of Reissner. 
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